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The Riemann problem method for solving a perturbed 
nonlinear Schrodinger equation describing pulse 
propagation in optic fibres 

D Mihalache, N-C Panoiu, F Moldoveanu and D-M Baboiu 
Institute of Atomic Physics, Department of Theoretical Physics, PO Box MG-6 Bucharest. 
Romania 

Received 17 May 1994 

Abstract. We used the Riemann problem method with a 3 x 3 matrix system to find the 
femtosecond single soliton solution for a perturbed nonlinear ScMdinger equation which 
describes bright ultrashoil pulse propagation in properly tailored monomode optical fibres. 
Compared with the Gel'fand-Levitan-Marcheko approach, the major advantage of the Riemann 
problem method is that it provides the general single soliton solution in a simple and compact 
form Unlike the standard nonlinear ScMdinger equadon. here the single soliton solution 
exhibits periodic evolution panems. 

1. Introduction 

Optical solitons in monomode optical fibres are now at the centre of an active research 
field due to their remarkable stability properties. As Hasegawa and Tapert [I]  have shown, 
in the region of the anomalous group-velocity dispersion of optical fibres it is possible to 
propagate bright solitons and in the region of normal groupvelocity dispersion it is possible 
to excite dark solitons. The generation of both bright [2] and dark [3] solitons in monomode 
optical fibres has been demonstrated in a series of elegant experiments. The technological 
applications of solitons as natural bits of information make them suitable for long-distance 
communication systems and this has justified the long-lasting interest in this area. 

The propagation of optical solitons in the picosecond domain can be well described by 
the nonlinear Schrodinger equation (NLSE). The NLSE is one of the completely integrable 
nonlinear partial differential equations and its solutions can be obtained by different methods, 
e.g. by using the inversescattering transform (1s") [49] ,  the Lie group theory [lo], by 
constructing a certain completely integrable finite-dimensional dynamical system whose 
solutions determine the exact solutions of the NLSE [11-13], etc. Recently within the 
framework of IST a perturbation theory was developed to investigate the effects of various 
perturbations on soliton propagation down an optical fibre [14, 151. 

When the pulses are shorter than 100 fs it is necessary to include in the W E  the higher- 
order nonlinear and dispersive effects, and the propagation of optical pulses in monomode 
optical fibres is well described by the following modified NLSE: 
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where q represents a normalized complex amplitude of the pulse envelope, Z is the 
normalized distance along the fibre, T is the normalized retarded time, e is a small parameter, 
a l ,  012, 013, r, and U are real normalized parameters which depend on the fibre characteristics 
[16-191. The last two terms in (1.1) describe the fibre loss effect and the self-induced Raman 
scattering effect which continuously downshift the mean frequency of femtosecond solitons. 
Because the soliton self-frequency shift is inverse proportional to the fourth power of the 
pulse width [20], the Raman scattering effect is the most important effect for femtosecond 
pulses. 

The necessity of including the higher-order nonlinear and dispersive effects in the NLSE 
was realized early [21, 221. Since then, considerable attention has been given to these effects 
(see e.g. reviews [ 191 and the references therein) and to the nonlinear effects resulting from 
the delayed response of the fibre nonlinearity 123-271. 

When acting individually the third-order dispersion term has a destructive influence on 
the soliton [28]. However, in the absence of the terms which account for the fibre loss and 
the intrapulse Raman scattering effect and for an appropriate choice of the parameters 011, 

012, 013, the combined acrion of higher-order nonlinear and dispersive effects can make the 
modified NLSE completely integrable by IST. Thus the cases when 011 : crz : 013 = 0 : 1 : 1 
(the derivative N U E  type I), 011 : Q'Z : 013 = 0 : 1 : 0 (the derivative NLSE type II), and 
011 : 012 : 013 = 1 : 6 : 0 (the Hirota equation) were solved in [2!3-31], respectively. The case 
cq : aZ : 013 = 1 : 6 : 3 (also an integrable one) has been recently studied in [32,33] by 
using the IST in the Gel'fand-Levitan-Marchenko (GLM) approach with 3 x 3 U-V matrix 
representation. IST with 3 x 3 U-V matrix representation was first analysed in [34,35]. 

We mention that, for a medium with an arbitrary linear dispersion law represented in a 
polynomial form, the Hirota equation can be further generalized to a still integrable equation 
which includes higher-order dispersion and nonlinear terms [36]. 

The paper is organized as follows. In section 2 we present in detail the Riemann 
approach for solving (1.1) with 011 : 012 : 013 = 1 : 6 : 3 and r = U = 0. This method is the 
most elegant and modem technique for solving nonlinear evolution equations [8,9]. One 
important advantage of this technique is that the nonlinear partial differential equations which 
are exactly integrable may be investigated in their perturbed form by using a perturbation 
theory based on the Riemann problem [37]. After that, in section 3 we find the soliton 
solution which corresponds to the soliton number N = 1 (the general single soliton solution) 
in a very simple and compact form. Two particular cases are written explicitly: (i) the Sasa- 
Satsuma soliton which represents a pulse with either one or two maxima of equal heights 
[32]. and (ii) a single soliton solution which passes through zero several times depending on 
its parameters and which we called a 'breather'. The general single soliton solution (N = 1) 
has an intermediate behaviour between these two particular cases. The Riemann problem 
method (RPM) offers an easier way to find a very simple and compact single soliton solution, 
in contrast to the GLM formalism which leads [33] to a very complicated formula for the 
general single soliton solution. The transformation relation between the two formulae are 
also given. Finally we present our conclusions. 

2. The Riemann problem method 

The Riemann problem, a classical problem in the theory of functions of a complex variable, 
plays a central role in the theory of solitons [8,9]. The Riemann problem is stated as 
follows: on a complex plane A, let be given a closed contour y and two sets of points: 
V I , ,  .., U, inside y ,  and P I ,  ... , pn outside y .  Let be G(A) a matrix function defined 
on y ,  and two Sets of subspaces Ni, Mi such that Ni @ Mi = CN. i = I , .  . . , n. It is 
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required to find two matrix functions @,(A) and @z(h), with the normalization @2(w) = I 
( I  being the N x N unit matrix), analytical inside and outside y .  respectively, such that 
@i(h)@z(h) = G(A) on y and Im @i(ui) = Ni,  Ker @Apt) = M i ,  i = 1,. . . , n. 

The perturbed NLSE ( 1 . 1 )  for (YI = 1, ciZ = 6,  (Y) = 3, and u = r =o: 

with the transformation 

u(x , t )=q(T,Z)exp  

t = Z  

is changed into a complex modified Korteweg-de Vries equation: 

(2.3) 

Equation (2.3) is equivalent with the so-called zero curvature condition [SI: 
U, - v, + [U, VI = 0 (2.4) 

where 
-ih 0 

and 

0 0 

(2.6) 

At the beginning we shall determine the x and t dependence of the subspaces N, and Mi 
which are involved in the formulation of RPM. To this aim let us introduce the matrices C/O, 
VO given by 

U0 = lim U VO = lim V 
I'W x+w 

and the following auxiliary equations: 

-iqx = (-iUo + fi)q 
-iq, = (-iVo + V)(o 

i& = @(-iVo + 0) 
iqjl = @(-iVo t V )  

- 

(2.7) 

(2.8a) 
(2.8b) 

(2.9a) 
(2.96) 
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-i@x = (-iUo + fi)* + i*Uo (2.10a) 
-ip, = (-iVo + +i*Vo (2.10b) 

i& = $(-iU,, + 3) +iUo$ (2.1 la) 
i& = $(-iVo + V) + iVo+ (2.11b) 

where U = U0 + i f i ,  V = VO + iv. Let 'p be a solution of the system formed by (2.8a) and 
(2.86). The compatibility condition corresponding to this system is given by (2.4). Besides 
this we introduce the matrix w ( x .  f ;  A) as the solution of the system 

0, = Uow 0, = vow (2.12) 

which has the compatibility condition 

uo, - vox + [UO, Vol = 0. (2.13) 

In our case 
w , ,  *I - - S .  CJ ,eioj(b+4h3fl) (2.14) 

w i t h a l = a z = - l , a 3 = 1 .  Then 
1 * = 90- 

and similarly 

(2.15) 

+=U@. (2.16) 

The Riemann problem can be written as follows: 

q ( x ,  t ;  ?.)*(I, f ;  A) = w ( x ,  f ;  h)G(h)w-'(x, f ;  h) (2.17) 

where G(h)  = @ ( x ,  t ;  h)9(x,  f: h) and @ - ' ( x .  t ;  h)  satisfy the system formed by (2.8a) and 
(2.8b). To make possible the derivation with respect to x and t in (2.17) in A = CO, where 
U = V = CO, we have to impose G(co) = I .  With the notations: *I = $, = @, 
9;' = 6,102 = 9, equation (2.17) becomes 

$i(x.f;  h ) @ z ( ~ , t ; h )  = ~(~,f;h)'p;'(x,f;h)~~(~,t;h)o-'(x,t;h) (2.18) 

and ' p l ( x ,  1 ;  CO) = ~ ( x ,  f ;  CO). After differentiating with respect to x and f in (2.18) we 
have 

(2.19a) 
(2.19b) 

(2.20a) 
(2.20b) 

which have the same poles as UO, Vo, respectively. Moreover, it is easy to demonstrate that 
U = U. and V = Vo. In order to find the soliton solution of (2.3) we have to consider the 
Riemann problem with zeros. Let vi, f i t ,  i = 1,. , . , n be these zeros (independent on x 
and t ) .  i.e. det $1 ( v i )  = det @*(pi) = 0 and 

(2.21a) 

(2.21b) 
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For h = vi or h = pi a condition which has to be fulfilled is that the poles that can appear 
at these points have to be suppressed. With the notation 

D:) = a, - U 

5:) = a, - U OlA=p,  

D, - - Vqkp,  

(2 .224 

(2.226) 

(2.22c) 

(2.224 

‘ I k u ,  

D? = a, - voIA=”, 

-(i) - 

from the conditions 
lim (A - u;)Uo = lim (A - u;)Vo = lim (A - pi)& = lim (h - pJV0 = 0 
A+”. A+ vi A-@, A-p, 

(2.23) 

we have 
D:),N,(x, t )  = 0 

b : ; M , ( x ,  t )  = 0 

which are equivalent to 

( 2 . 2 4 ~ )  

(2.2Ab) 

(2.254 
(2.256) 

where Njo) and My’ are independent of x and t .  

attention to the solving of the Riemann problem for t = 0. We shall write (2.8a) as 

with J = diag[al,u2,a3]; a1 = a2 = -1 , a3 = 1. We notice that C? = fi. 

Having derived the time dependence (2.25) of the Riemann problem we shall turn ow 

(2.26) -ipx = ( J A  + 0)p  

Let (p*(x; A))ir  be those solutions of (2.26) which satisfy the conditions 

(p*(x; A ) ) , ~  + dtkeiQk x + *Co. (2.27) 
We introduce a unimodular transition matrix S(h),  

p-(x; A) = p+(x; I ) S ( h ) .  (2.28) 
By denoting (S),, = aii and (S- l ) i j  e p i j  one can write the following relations: 

s+ = ss- (2.29) 
R-  = SR+ (2.30) 

where 
1 -@I2 0113 0 

s+ = ( : b;I 0123 ) 
s-= ( 1:; U33 8 )  0133 -a32 

0 1 -a12 813 
(2.31) 

R-  = ( ii: &3 :) R’= ( 8 ff; E%) . -832 1 
We mention that the factorizations (2.29) and (2.30) are not unique, but the final results 

If x+ and x -  are given by 
are not influenced by OUT specific choice (2.31). 

( 2 . 3 2 ~ )  

(2.32b) 
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then 
+ - +e-iJir * - x  *- = x-e-"'l 

( 2 . 3 3 ~ )  

(2.33b) 

are solutions of the system (2.10). 

plane A , @- can be analytically continued in the upper complex half-plane A and: 
One can demonstrate that @+ can be analytically continued in the lower complex half- 

(2.34) Z7 = lim A[**, J ]  
h+JO 

where 
0 o u  

. = - i (  2. :). 
This equation gives us the solution of (2.3) if we know either the matrix function @' 

Now we consider the equation 
or @-. 

i@z = @ ( J I  + fi) . (235) 
In the same manner as above, we can introduce the corresponding Jost functions of (2.35): 

(@"(x; A))~, -+ dixe-i'eiX x + * C o .  (2.36) 

Due to (2.36) and (2.27) the unimodular matrix .? which can be introduced as 

8- = i@+ (2.37) 

is equal to S-' . Following the same procedures as before one can write 

where s', i* are given by 

811 812 813 

1 0 0  

1 
s- = ( -821 

0131 

0 

0 
81 I 
0132 

0112 

8 3  
0 
:; ) 

1 

As before we introduce the functions ?* given by 
-+ - i+@+ = 9-8- 
2- = i++- = i-@+ 
x -  

Then the functions $* which are related to the functions f *  by the formulae 
jt = e i J A x i t  
3- ~ = eiIA.r,.- 

(238a) 
(2.386) 

(2.39) 

(2.400) 
(2.40b) 

(2.4 1 a) 

(2.416) 

are solutions of the system (2.1 I). 

half-plane A and $- can be analytically continued in the upper complex half-plane A. 
It can be easily shown that $+ can be analytically continued in the lower complex 
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(2.42~) 
(2.42b) 

(2.43~) 
(2.43b) 

The Riemann problems (2.42a) and (2.4%) are equivalent, and before starting the solving 
of one of these two Riemann problems, we have to consider the symmetries that occur. So, 
if p(x. A) is a solution of (2 .8~)  then Kp*(x, -h*)K is also a solution of (2.8a), where 

0 1 0  
K = ( , l , :  Ill. (2.44) 

Thus if det q t ( i 0 )  = 0 then also det $+(-A:) = 0. Moreover, U t  = U and if A E R then 
one has 

3 = s-' = st (2.45~) 
st = (R-)t (2.456) 
3- = (R+)' (2.4%) 
R+ = (S-)t (2.456) 
li- = (S+)+ . (2.45e) 

Thus +-(A) has a zero in A: if and only if q + ( h )  has a zero in Ao. 
In order to find the single soliton solution of (2.3) we state the Riemann problem as 

follows. 
Let y be the real axis of the complex plane h, and let A0 be a complex number with 

Im'Xo z 0. Let MO, MO, NO, & be four complex vectorial subspaces independent on x and 
f such that MO fB NO = MO fB & = C3 and let M ,  A?, N, d be given by 

M E o~(h0)Mo = Ker@-(Ao) (2.46~) 
fi w(-Ag) MO = Ker@-(-hg) (2.46b) 
N o~(hG)No = Im$'(k;) (2.46~) 
A oJ(-Ao)do = Im$+(-Ao). (2.466) 

It is required to find two functions $+(A) and @-(A), analytical in the lower complex 
half-plane and in the upper complex half-plane, respectively, such that $+@)@-(A) = I 
on the contour y .  

The hermiticity property Ut = U gives 

$+(ho) = [@-(A:)]+ (2.47) 

which implies that MIN. By using the symmetries mentioned above we have 

rS = KN* (2.48a) 
80 = KN: (2.486) 

M = KM* (2.48~) 
MO = KM: . (2.484 
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In order to find $+(A) and $-(A) one can write 

(2.49) 

With 

Im At = Ker $-(Ao) = M 
Im A -  = Ker $-(-A:) = M 

(2.51a) 

(2.5 1 b) 

we have two alternatives of splitting C3. The first choice corresponds to dim M = 1, 
and the second choice corresponds to dim M = 2. In the next section we shall choose 
dim M = 1 due to easiness of calculations. It is easy to observe that if one chooses U to 
be real in (2.3) then one finds the modified Korteweg4e Vnes (mKdV) equation which has 
well known soliton solutions. The above scheme works for it, but we have a supplementary 
symmetry condition, i.e. N = KN, M = KM, and the single soliton solution coincides 
with the solution which may be obtained if one choose a 2 x 2 U-V matrix pair. 

3. Single soliton solution 

In the case when dim M = dim MO = 1, MO and NO can be written as: 

(3.la) 

(3.lb) 

with a,  b arbitrary complex numbers. 

[nl, n?) be the basis of fi. We have 
Let [m+J be the basis of M, {m-J be the basis of M ,  In:, n:) be the basis of N, and 

(3.2a) 

(3.2b) 

Because h A +  = M and Im A -  = A?, one can write 
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where x* are certain unknown vectors. Because M I N .  i+ = m+ complete the basis 
{ni, ni] to a basis of C3. From the conditions N = Im$+(h;) and N = Im$+(-ho) one 
has 

(3.5a) 
(3.56) 

$+(A@ = n: 8 y: + n: @ y t  
I 1 2 2  $+(-io) = n- @ Y- + n- 8 Y- 

with y l ,  y: unknown vectors. Hence we obtain the relations 

Substituting equations (3.6) in (2.49) we have 

( 3 . 6 ~ )  

(3.6b) 

(3 .74 

(3.7b) 

where (n ,  m )  = E;=, n;mj. From $+(A;) = K$+'(-ko)K it follows that A+ = - K A ; K  
and x+ = -Kx: .  Substituting these in (3.7) we have 

(3 .8~)  

(3.8b) 

One can observe that (3.86) is equivalent with (3.8a). From (2.34) and by using the 
hermiticity property f i t  = fi we have 

(3.9) fi = Iim A [ J ,  $+I.  
A-bW 

Finally, u ( x ,  t )  can be written as 

u(x .  0 = -2i[(m+)l(~+)3 - (m+);(x+);l = -2i[(m+)3@+)2 - (m+); (x+); l .  (3.10) 

From (3.8a), with notations: (m+, m+) = QO and (m+, Km;) = Q, Q = Ql + in,, 
Qo, QI, QZ E R. one can derive two systems of equations: 

and 

We note that the discriminants of these systems are the same 

(3.13) 
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Thus the solution u(x,  t )  is 

(3.14) 

If we write ho = (-6 + iq)/2 with 6, q E R, q > 0 and if we use the notations: 
Ao = qIx - E(?* - 3eZ)tI; Bo = ( [ x  t E((' - 3q2)t], then U@. z) is 

with 

(3.15) 

(3.16a) 
(3.166) 

Two particular cases are extremely important. First we discuss the case b = 0. For this 
choice equation (3.15) becomes 

(3.17) 

where B = BO + (p; A = A0 + p + y ;  a = ePtip; IC[ = ey; c = 1 - iq/(. This solution was 
obtained in 1321 and represents either a pulse with one maximum (1 < IcI < 2) or a pulse 
with two maxima with equal heights (IC] > 2). 

The second important case is obtained when one chooses a = b in (3.15). In this case, 
u ( x ,  r) takes the form 

(3.18) 
6 cosh (A0 + p )  cos (BO + (p) - 0 sinh (A0 + p )  sin (BO + 'p) 

(Zcosh2(A~ + p )  + q2 sinz(Bo + q) 
u ( x .  t )  = Jztq 

where ep = fila1 and 'p = arga. 

solution does not represent a bound state of single solitons (N = 1). 
We called this solution a 'breather' because I-: u(x,  t )  dx = 0. We mention that this 

The general single soliton solution of (2.1) can be written in the most compact form as 

6 = -;arctan -tanh2v (2 ) 
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In [33], by using the Gel‘fand-Levitan-Marchenko approach the general, multiple 
‘humped’, single soliton solution of (2.3) was found in the form 

u ( x ,  t )  = - emA 
zei(va + v i 4 2  

A 

(3.20) 

where 

1 lmbole-Z(A-iB) - (laol’ + lb~l’)e-’”] 1’ --I[ v2 1; 2Ao 

Here A = v [ x  - s(q’ - 3$2)rl. B = $ [ x  + ~(i? - 3qz)t1 + (qa - vdj2; (0. = argao, and 
% = arg bo. 

After lengthy but simple calculations, the transformation relations between a,  b in (3.15) 
and ao, bo in (3.20) are 

2qhga 2qhob’ m = -  bo = - 
t(la1’ + lbI2) + iv(lal’ - b1’) $(lal’ + 14’) + iq(lalz - Ibl’) ’ 

(3.21) 
In figures 1 and 2 we show the evolution of the intensity profile 1qI2 for the ‘breather’ 

soliton (3.18) and a general single soliton (3.19), respectively. From (3.19). one can observe 
that the single soliton solution exhibits a periodic evolution pattem. unlike the standard NLSE 
where periodic evolution appears only for higher-order solitons ( N  > 1). 

4. Conclusions 

By using the RPM we have obtained the general single soliton solution for the 1:63 
perturbed NLSE (2.1) in a most simple and compact form. Very rich in qualitatively different 
behaviours, this solution could become a milestone for new phenomena in the femtosecond 
range. The key factor in solving (2.1) is the transformation (2.2) which changes the perturbed 
NLSE to a complex mKdV equation (2.3). Apart from being a simple mathematical hick, the 
transformation (2.2) also has deep physical consequences. Unlike the standard NLSE, where 
the soliton is a balance between pulse chirping and broadening due to the group-velocity 
dispersion effect and the action of the self-phase modulation due to the nonlinear refractive 
index, the single soliton solution of (2.3) is a balance between pulse asymmetries caused 
by less destructive effects described by the third-order dispersion and the self-steepening 
terms. Consequently we expect that the single soliton (3.19) of the perturbed NLSE (2.1) 
could be observed experimentally in properly tailored optic fibres. 
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Figure 1. Intensie profile 
for the 'breather' soliton. Here og =bo = I ,  F = 0.3, 'I = 1 .  

versus normalized distance Z and normalized retarded time T 

Figure 2. Intensity profile lq[z versus n o d i z e d  distance Z and normalized retarded time T 
for a general single soliton. Here og = 1 ,  bo = 0.2, B = 0.3, I) = 1. 
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